การ์ทเนอร์ (Gartner) คาดการณ์อีกสองปี องค์กรจะใช้โมเดล AI ขนาดเล็กเฉพาะงานมากกว่าโมเดลภาษาขนาดใหญ่ (LLMs) ถึง 3 เท่า…
Gartner คาดภายใน 2 ปี องค์กรต่าง ๆ จะใช้ AI ขนาดเล็กมากกว่า LLMs ถึง 3 เท่า
การ์ทเนอร์ คาดการณ์ว่าในอี
“ข้อมูล” คือตัวแปร

Sumit Agarwal รองประธานนักวิเคราะห์ การ์ทเนอร์ กล่าวว่า ความหลากหลายของงานในกระบวนการทางธุรกิจ และความต้องการความแม่นยำที่มากขึ้นกำลังผลักดันให้เกิดการเปลี่ยนแปลงไปสู่การใช้โมเดลเฉพาะทางที่ได้รับการปรับแต่งสำหรับฟังก์ชันเฉพาะ หรือข้อมูลในโดเมนนั้น ๆ
โดยโมเดล AI ขนาดเล็กเฉพาะงานเหล่านี้ให้การตอบสนองที่เร็วกว่าและใช้พลังการประมวลผลน้อยกว่า ช่วยลดต้นทุนในการดำเนินงาน และการบำรุงรักษา
องค์กรสามารถปรับแต่งโมเดล LLMs สำหรับงานเฉพาะได้ โดยใช้เทคนิค Retrieval-Augmented Generation (RAG) หรือ Fine-Tuning เพื่อสร้างโมเดลเฉพาะทาง ในกระบวนการนี้ ข้อมูลขององค์กรจะเป็นตัวแปรสำคัญที่สร้างความแตกต่าง
จำเป็นต้องมีการเตรียม ตรวจสอบคุณภาพ กำหนดเวอร์ชัน และการจัดการข้อมูลโดยรวม เพื่อให้มั่นใจว่าข้อมูลที่เกี่ยวข้องได้รับการจัดโครงสร้างมาอย่างเหมาะสมเพื่อตอบสนองความต้องการในการ Fine-Tuning ซึ่งเป็นกระบวนการปรับแต่งโมเดล AI ด้วยข้อมูลเฉพาะด้าน

“เมื่อองค์กรตระหนักถึงคุณค่าของข้อมูลส่วนตัว และข้อมูลเชิงลึกที่ได้จากกระบวนการเฉพาะทางมากขึ้น พวกเขาก็มีแนวโน้มที่จะเริ่มสร้างรายได้จากโมเดลของตน และเสนอการเข้าถึงทรัพยากรเหล่านี้ให้กับกลุ่มเป้าหมายที่กว้างขึ้น รวมถึงลูกค้า และแม้แต่คู่แข่ง เป็นการเปลี่ยนจากแนวทางการป้องกันไปสู่การใช้ข้อมูล และความรู้ที่เปิดกว้างผ่านการร่วมมือกันมากขึ้น” Agarwal กล่าวเพิ่มเติม
จากการทำให้โมเดลเป็นกรรมสิทธิ์เชิงพาณิชย์ องค์กรจะสามารถสร้างแหล่งรายได้ใหม่พร้อมกับส่งเสริมระบบนิเวศที่เชื่อมโยงถึงกันมากขึ้น
การนำโมเดล AI ขนาดเล็กเฉพาะงานไปใช้

องค์กรที่ต้องการนำโมเดล AI ขนาดเล็กเฉพาะงานไปใช้ ควรพิจารณาคำแนะนำดังต่อไปนี้
- ทดลองใช้โมเดลที่มีบริบทเฉพาะ (Pilot Contextualized Models) : นำโมเดล AI ขนาดเล็กที่มีบริบทเฉพาะไปใช้ในพื้นที่ที่บริบททางธุรกิจมีความสำคัญหรือในที่ที่ LLMs ไม่สามารถตอบสนองความคาดหวังด้านคุณภาพหรือความเร็วได้
- ใช้แนวทางแบบผสมผสาน (Adopt Composite Approaches) : ระบุยูสเคสการใช้งานที่โมเดลเดียวไม่เพียงพอ และเปลี่ยนมาใช้แนวทางแบบผสมผสานที่เกี่ยวข้องกับหลายโมเดล และมีขั้นตอนของเวิร์กโฟลว์
- เสริมสร้างข้อมูล และทักษะ (Strengthen Data and Skills) : ให้ความสำคัญกับการเตรียมข้อมูลเพื่อรวบรวม คัดสรร และจัดระเบียบข้อมูลที่จำเป็นสำหรับการ Fine-Tuning โมเดลภาษา ในขณะเดียวกัน ลงทุนพัฒนาทักษะบุคลากรในกลุ่มทางเทคนิค และในกลุ่มงานต่าง ๆ อาทิ สถาปนิก AI และข้อมูล นักวิทยาศาสตร์ข้อมูล วิศวกร AI และข้อมูล ทีมงานด้านความเสี่ยง และการปฏิบัติตามกฎระเบียบ ทีมจัดซื้อ และผู้เชี่ยวชาญในสาขาธุรกิจ เพื่อขับเคลื่อนแนวคิดริเริ่มนี้ได้อย่างมีประสิทธิภาพ
ส่วนขยาย * บทความเรื่องนี้น่าจะเป็นประโยชน์สำหรับการวิเคราะห์ในมุมมองที่น่าสนใจ ** เขียน: ชลัมพ์ ศุภวาที (บรรณาธิการ และผู้สื่อข่าว) *** ขอขอบคุณภาพประกอบบางส่วนจาก N/A
สามารถกดติดตามข่าวสาร และบทความทางด้านเทคโนโลยีของเราได้ที่ www.facebook.com/itday.in.th

























