Gartner แนะธุรกิจเพิ่มประสิทธิภาพ “Big Data” ด้วยฐานข้อมูลขนาดเล็ก และกว้าง

Gartner

การ์ทเนอร์ (Gartner) แนะธุรกิจเพิ่มประสิทธิภาพ “Big Data” ด้วย “ชุดข้อมูลขนาดเล็ก” และ “ชุดข้อมูลแบบกว้าง” สร้างปัจจัยสำคัญในการวิเคราะห์ข้อมูล และเอไอ…

Gartner แนะธุรกิจเพิ่มประสิทธิภาพ “Big Data” ด้วยฐานข้อมูลขนาดเล็ก และกว้าง

Gartner
จิม ฮาเร่ รองประธานฝ่ายวิเคราะห์การ์ทเนอร์ อิงค์

มร.จิม ฮาเร่ รองประธานฝ่ายวิเคราะห์ การ์ทเนอร์ อิงค์ กล่าวว่า เหตุการณ์ที่ทำให้เกิดการหยุดชะงัก อาทิ การระบาดครั้งใหญ่ของไวรัสโควิด-19 ส่งผลให้ข้อมูลในอดีตที่สะท้อนถึงสถานะขององค์กรต่าง ๆ ล้าสมัยอย่างรวดเร็ว เนื่องจากองค์กรธุรกิจต้องเผชิญกับข้อจำกัดต่าง ๆ

ในการใช้ บิ๊กดาต้า (Big Data) ที่เป็นปัจจัยสำคัญในการสร้างระบบวิเคราะห์ข้อมูล และเอไอ ตามแนวทางใหม่ที่เรียกว่า ชุดข้อมูลขนาดเล็ก และ ชุดข้อมูลแบบกว้างในยุคของบิ๊กดาต้านั้นประสบความสำเร็จในเรื่องของการจัดเก็บและจัดการข้อมูล

แต่ยังไม่สามารถช่วยให้องค์กรธุรกิจได้รับประโยชน์จากข้อมูลดังกล่าว แต่ ชุดข้อมูลขนาดเล็ก และกว้าง นั้นสามารถตอบโจทย์ในจุดนี้ได้ ซึ่งแนวทางการใช้ ชุดข้อมูลแบบกว้าง ช่วยให้องค์กรวิเคราะห์และทำงานร่วมกับแหล่งข้อมูลหลากหลาย ไม่ว่าจะเป็นจากแหล่งข้อมูลขนาดเล็กและขนาดใหญ่

หรือแหล่งข้อมูลแบบไม่มีโครงสร้างและมีโครงสร้างได้ ในขณะที่แนวทางการใช้ชุดข้อมูลขนาดเล็กนั้นเป็นเรื่องเกี่ยวกับการประยุกต์ใช้เทคนิคในการวิเคราะห์ที่ต้องการข้อมูลน้อยลงแต่ยังให้ประโยชน์ในเชิงลึก โดยทั้ง 2 แนวทาง ช่วยให้การวิเคราะห์และใช้ระบบเอไอมีประสิทธิภาพมากขึ้น ลดการพึ่งพาข้อมูลขนาดจำนวนมหาศาลให้แก่องค์กร

และยังช่วยให้รู้เท่าทันสถานการณ์แบบเบ็ดเสร็จ เรียกว่ามองได้รอบด้านแบบ 360 องศา โดยองค์กรสามารถนำข้อมูลมาวิเคราะห์เพื่อช่วยในการตัดสินใจที่ดีขึ้นในบริบทที่ซับซ้อนอันเกี่ยวเนื่องกับเหตุการณ์การหยุดชะงักได้ เพื่อขับเคลื่อนได้อย่างรวดเร็ว และตอบสนองความต้องการของลูกค้า

การ์ทเนอร์คาดว่าภายในปี 2568 องค์กรต่าง ๆ ประมาณ 70% จะถูกบังคับให้โฟกัสกับการใช้ชุดข้อมูลขนาดเล็ก และกว้างแทนฐานข้อมูลขนาดใหญ่ ซึ่งช่วยให้วิเคราะห์บริบทของข้อมูลได้หลากหลายขึ้น และทำให้ระบบเอไอใช้ข้อมูลน้อยลง

ผู้บริหารด้านข้อมูล และการวิเคราะห์ (D&A) ต้องมองหากลยุทธ์ที่ช่วยให้องค์กรใช้ชุดข้อมูลขนาดเล็กและกว้าง รวมถึงข้อมูลสังเคราะห์ เพื่อขับเคลื่อนองค์กรธุรกิจไปสู่การเปลี่ยนผ่านด้วยการใช้รูปแบบการวิเคราะห์ข้อมูลเพิ่มขึ้นด้วยระบบเอไอ (AI) และแมชชีนเลิร์นนิ่ง (ML) 

ที่จะช่วยให้สามารถจัดการกับความท้าทายต่าง ๆ ได้อย่างมีประสิทธิภาพ อาทิ จัดการกับข้อมูลการฝึกอบรมที่ไม่ค่อยได้ใช้งาน หรือการพัฒนาโมเดลธุรกิจที่มีประสิทธิภาพมากขึ้นโดยอาศัยข้อมูลหลากหลาย และกว้างกว่าเดิม

Gartner

ทำไมข้อมูลขนาดเล็ก และกว้างจึงสำคัญ?

แน่นอนว่าการวิเคราะห์ และใช้ระบบเอไอนั้นต้องทำงานร่วมกับข้อมูลที่สดใหม่และในขนาดของข้อมูลที่น้อยกว่าเดิม นอกจากนี้การเก็บรวบรวมข้อมูลในอดีตที่เพียงพอหรือติดป้ายกำกับไว้ใช้เฉพาะเพื่อใช้วิเคราะห์และสร้างระบบเอไอยังถือเป็นความท้าทายของหลาย ๆ องค์กรอยู่ในวันนี้

การจัดเรียงข้อมูล คุณภาพข้อมูล การปกป้องความเป็นส่วนตัวและอคติถือเป็นความท้าทายทั่วไป ถึงแม้จะมีฐานข้อมูลบิ๊กดาต้า แต่ค่าใช้จ่าย เวลาที่เสียไปและพลังงานในการใช้ระบบ ML ที่มีการควบคุมดูแลแบบเดิมก็ยังคงเป็นสิ่งที่เกิดขึ้นอยู่เสมอ

นอกจากนี้การตัดสินใจของมนุษย์และระบบเอไอนั้นจะมีความซับซ้อน และความต้องการมากขึ้น ซึ่งต้องอาศัยข้อมูลหลากหลายเพื่อให้รับรู้สถานการณ์ได้อย่างถี่ถ้วน ซึ่งเมื่อนำทุกอย่างมารวมเข้าด้วยกันนั่นหมายความว่าเราต้องการเทคนิคการวิเคราะห์ที่เพิ่มขึ้นถึงจะสามารถใช้ประโยชน์จากฐานข้อมูลที่มีอยู่เดิมได้อย่างมีประสิทธิภาพ

ไม่ว่าจะลดปริมาณหรือเพิ่มปริมาณข้อมูลที่ต้องการใช้หรือดึงประโยชน์จากแหล่งข้อมูลที่หลากหลายและข้อมูลที่ไม่มีโครงสร้างมาใช้เพิ่ม

Gartner

มีผลกระทบอะไรบ้าง?

แนวทางการใช้ ชุดข้อมูลแบบกว้าง ใช้หลักการวิเคราะห์ในรูปแบบสมการ X โดยที่ X หมายถึงการค้นหาความเชื่อมโยงระหว่างแหล่งข้อมูล ตลอดจนหมายถึงรูปแบบข้อมูลที่หลากหลาย ซึ่งรูปแบบข้อมูลเหล่านี้มีตั้งแต่ ข้อมูลในรูปแบบของตาราง ข้อความ รูปภาพ วิดีโอ เสียงที่ได้ยิน เสียงพูด อุณหภูมิหรือแม้แต่กลิ่นและการสั่นสะเทือน

โดยมาจากแหล่งข้อมูลทั้งภายในและภายนอกที่มีความหลากหลาย อาทิ ข้อมูลบนมาร์เก็ตเพลส โบรกเกอร์ โซเชียลมีเดีย เซ็นเซอร์ไอโอที และฝาแฝดดิจิทัล (Digital Twins)

แนวทางการใช้ ชุดข้อมูลขนาดเล็ก คือการสร้างโมเดลเรียนรู้โดยใช้ข้อมูลจำนวนน้อย เช่น เทคนิคการวิเคราะห์ข้อมูลอนุกรมเวลา แทนที่จะใช้เทคนิคการเรียนรู้เชิงลึกที่อาศัยข้อมูลจำนวนมากในลักษณะรูปแบบเดียวใช้เหมือนกันทั้งหมด ซึ่งยังมีเทคนิคการสร้างโมเดลเรียนรู้อื่น ๆ

ได้แก่ เทคนิค FewShot Learning เทคนิค Synthetic Data หรือ เทคนิค SelfSupervised Learning โดยเรายังสามารถใช้ข้อมูลน้อยลงได้อีกจากการใช้เทคนิคต่าง ๆ เช่น การทำงานร่วมกัน หรือการรวมกลุ่ม การปรับตัว การเสริมกำลัง และการถ่ายโอนการเรียนรู้

Gartner

สำหรับการพัฒนานวัตกรรมด้วยการใช้ ชุดข้อมูลขนาดเล็ก และกว้าง ยังรวมถึงการใช้คาดการณ์ความต้องการสินค้าในร้านค้าปลีก เรียนรู้พฤติกรรม และอารมณ์แบบเรียลไทม์กับการบริการลูกค้า เพื่อให้แบรนด์ได้เรียนรู้ ศึกษา และวิเคราะห์พฤติกรรมของลูกค้าโดยละเอียดมากขึ้นในแบบ HyperPersonalisation และช่วยการปรับปรุงประสบการณ์ของลูกค้าให้ดียิ่งขึ้น

ด้านอื่น ๆ ได้แก่การรักษาความปลอดภัยทางกายภาพหรือการตรวจจับการฉ้อโกง และระบบอัตโนมัติที่ปรับเปลี่ยนได้ เช่น หุ่นยนต์ ซึ่งมีการเรียนรู้การวิเคราะห์ความสัมพันธ์ของห้วงเวลาและพื้นที่เหตุการณ์ผ่านทางประสาทสัมผัสต่าง ๆ อยู่ตลอดเวลา

เริ่มต้นอย่างไรดี?

สำรวจแนวทางการปรับใช้ชุดข้อมูลขนาดเล็ก และกว้างเพื่อลดอุปสรรคในการเข้าสู่โหมดการวิเคราะห์ขั้นสูงและเอไออันเนื่องมาจากการขาดข้อมูลที่ควรรับรู้จริง ๆ แทนที่จะอาศัยการเรียนรู้เชิงลึกที่พึ่งพาการใช้ข้อมูลมากเกินไป เพิ่มเครื่องมือทางเทคนิคต่าง ๆ ให้กับทีม D&A เพื่อสร้างบริบทของข้อมูลที่สมบูรณ์ยิ่งขึ้นสำหรับใช้ในการตัดสินใจทางธุรกิจที่แม่นยำ โดยใช้ประโยชน์จากแหล่งข้อมูลภายนอกที่มีเพิ่มมากขึ้นผ่านการแบ่งปันข้อมูลและมาร์เก็ตเพลส

สุดท้าย

เพิ่มคุณค่า และปรับปรุงพลังการทำนายของข้อมูลด้วยการผสมผสานแหล่งข้อมูลทั้งที่มีโครงสร้าง และไม่มีโครงสร้างให้มีมิติมากขึ้น

ส่วนขยาย

* บทความเรื่องนี้น่าจะเป็นประโยชน์สำหรับการวิเคราะห์ในมุมมองที่น่าสนใจ 
** เขียน: ชลัมพ์ ศุภวาที (บรรณาธิการ และผู้สื่อข่าว) 
*** ขอขอบคุณภาพประกอบบางส่วนจาก N/A

สามารถกดติดตามข่าวสารและบทความทางด้านเทคโนโลยีของเราได้ที่  www.facebook.com/itday.in.th

Itdayleadger

This site uses Akismet to reduce spam. Learn how your comment data is processed.